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It is shown by means of distribution functions that, with anharmonic motions of the atoms, different 
probability density functions for the nuclear positions, and also temperature factors, are obtained depend- 
ing on whether or not interatomic thermal coupling is taken into account. The interatomic thermal coupling 
is introduced by means of a unit-cell potential, and, thus, the isolated-atom potential approach [Willis 
(1969). Acta Cryst. A25, 277-300] is extended for cubic site symmetry. Conditions of the anharmonic 
potential parameters which result from the fact that the probability density function must be integrable 
and non-negative everywhere are discussed. The formal expression for the temperature factor obtained is 
compared to those derived by lattice-dynamical calculations. It is concluded that the imaginary contribu- 
tions, which were not found in the lattice-dynamical calculations, form a substantial part of the tem- 
perature factor for anharmonic motions. The lattice-dynamical calculations suggest that the cumulant 
expansion is the appropriate form of the temperature factor for anharmonic motions. 

1. Introduction 

The calculation of temperature factors for the anhar- 
monic motions of atoms on the basis of lattice dynam- 
ics is difficult and cumbersome (Maradudin & Flinn, 
1963; Wolfe & Goodman,  1969). The way out of per- 
forming these which is normally used in structure anal- 
ysis is to assume an Einstein model of the lattice vibra- 
tions in which the coupling of the motions of different 
atoms is neglected. This model can be represented by 
an isolated-atom potential (Willis & Pryor, 1975). 
The isolated-atom approach can readily be handled 
mathematically '... and is, therefore, the only one 
likely to be of general interest to a crystallographer' 
(Willis & Pryor, 1975, p. 146). The purpose of this paper 
is: 

(1) to show that a lattice-dynamical calculation is 
not the only way to take into account the coupling 
of the motions of the atoms, but that an approach 
which refers only to the unit cell will also suffice; 

(2) to extend Willis's (1969) derivation of the an- 
harmonic temperature factor so that the coupling of 
the motions of different atoms is taken into account; 

(3) to point out conditions of the anharmonic poten- 
tial parameters which result from the condition that the 
probability density function for the nuclear positions 
must be integrable and everywhere non-negative; 

(4) to compare the expressions obtained with a 
unit-cell approach with those of lattice-dynamical 
calculations, and to examine both with respect to 
completeness. 

2. A unit-cell approach to the temperature factor 

In order to take into account the coupling of the 
motions of different atoms in the crystal we refer to the 
following situation, which was shown to hold by Mar- 
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shall & Lovesey (1971) for neutron diffraction. The 
structure factor for any form of the density distribution 
in a crystal is the Fourier transform of the average 
density in the unit cell. An application to X-ray diffrac- 
tion was given by Scheringer (1977). Hence, a consider- 
ation which is restricted to the unit cell should, in prin- 
ciple, be sufficient for the calculation of structure fac- 
tors to any desired degree of accuracy. This imme- 
diately shows that a lattice-dynamical treatment is not 
the only alternative to an isolated-atom approach. 

In order to realize our concept, we start with the 
average (dynamic) density in the unit cell. For X-ray 
diffraction, a temperature factor can only be defined 
in the convolution approximation; for neutron dif- 
fraction, the convolution principle holds rigorously. 
Hence, with Scheringer's (1977) equation (2.2) we can 
write for the average dynamic density in the unit cell 

0(X)dyn -- ~O,(X -- Xr -- u,)f(u)du. ( 1 ) 
r = l  --oG 

Here, m is the number of atoms (nuclei) in the cell, x~ 
the equilibrium position of the rth atom, u a 3m × 1 
matrix which contains the m displacement vectors u, 
of the atoms, and f(u) the joint thermal distribution 
function for the m displacement vectors u,. In X-ray 
diffraction, 0 , (x -xr )  is the density distribution of the 
rth atom about its mean position x,, and, in neutron 
diffraction, 0~(x-x~) is a fi-function at x~ which corre- 
sponds to the constant scattering amplitude for neu- 
trons at the rth nucleus. If the motions of the m atoms 
are statistically independent, f(u) is equal to the prod- 
uct of the m independent distribution functions f(ur). 
Generally, this does not hold, and we have to assume 
coupled motions of the atoms. Then, the integration in 
(1) has to be carried out over f(u). Since (1) represents 
a sum of terms depending only upon r, except for f(u), 
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we can perform the integration for each term over the 
remaining m -  1 displacement vectors and obtain 

Q ( X ) d y  n = L0r(X - -  X r - -  u ~ ) g ( u , ) d u  r . ( 2 )  

r - - I  - o o  

By definition, g(u,) is the marginal distribution of the 
distribution function f(u) with respect to the vector u,. 
In general, g(u,)g:f(u,). The Fourier transformation 
of (2) can now be performed term by term, and yields 
the (dynamic) structure factor in the well-known form; 
the temperature factor will be identified as the Fourier 
transform of the marginal distribution g(u,). 

If we consider the temperature factor to be the Fou- 
rier transform of a probability density function (p.d.f.), 
we may formulate the result of this section as follows: 
The p.d.f, from which the temperature factor is cal- 
culated cannot fully be obtained by an isolated-atom 
approach, but only by a unit-cell approach; and, for 
the rth atom, the p.d.f, is given by the marginal density 
function g(u,), which is obtained from the joint density 
function f(u). 

In the harmonic approximation of nuclear motions, 
we have the simple result g(u,)=f(u,) (Scheringer, 
1977). This is a special case of the general theorem that 
any marginal distribution of a multi-dimensional 
Gaussian distribution is again a Gaussian distribution 
with the correspondingly reduced covariance matrix. 
For anharmonic motions, however, the p.d.f, is not 
Gaussian and, hence, the type of distribution function 
usually changes when the marginal distribution is 
formed. A simple illustration with a Boltzmann distri- 
bution, in which a fourth-order anharmonic term 
xZy 2 is added to the harmonic term of the p.d.f., is as 
follows: The bivariate p.d.f. 

f ( x , y ) = C  e x p  [--½(X 2 + y2 + x 2 y 2 ) ]  (3) 

has the marginal p.d.f. 
g(y) = C,,,(1 + y2)-1/2 exp (-½y2),  (4) 

where C and C,,, are normalizing constants. This ex- 
ample is credited to Professor V. Mammitzsch, 
Mathematisches Institut der Universit~it Marburg. 

3. Anharmonic temperature factors for cubic site 
symmetry 

The anharmonic temperature factor for cubic site 
symmetry was derived by Willis (1969) by an isolated- 
atom potential approach. Here, we assume the basic 
idea of this derivation, but extend it by using a unit-cell 
potential. We form the unit-cell potential as the sum 
of Willis's isolated-atom potentials plus the coupling 
terms. Largely using Willis's notation, we write for the 
isolated-atom potential of the rth atom 

V(Ur) = V 0 + ½0~r u2 + ]~,Ur 1Ur2t/r3 

+ G  -~6~)u~3 ¢ +6,(u,1" +u,2* + u,3) , *  (5) 

Z 2 2 2 We abbreviate the anhar- where u, =u,1 +U,z+U,3. 
monic fl, ?, and 6 terms in (5) as A(u,). As far as intro- 

ducing the coupling terms is concerned, we have to 
observe that neither the marginal p.d.f, nor the temper- 
ature factor obtained violates the conditions of cubic 
site symmetry. The number of coupling terms is thereby 
restricted. Without going into detail, we state that, for 
cubic site symmetry, only one fourth-order coupling 
term 7,,~ is allowed, and we obtain for the unit-cell 
potential 

~]rs(Urlldsl q-Ur2bls2 +blr31ds3). (6) V ( u ) _ ~ 2 V ( U r ) q _ ~ ' -  " 2 2 2 2 2 2 

r r : / : s  

The joint p.d.f, is now obtained from the Boltzmann 
distribution of the potential, i.e. 

f (u)= C exp [ -  V(u)/k T ] ,  (7) 

where C is a normalizing constant. In order to evaluate 
(7), it is usually assumed that the anharmonic contribu- 
tions are small relative to the harmonic term, and thus 
they can be expanded into a series up to linear terms 
(Willis, 1969). Hence, in this approximation, 

f (u)= C' 1- I G ( u , ) [ 1 - ( k T ) - ~  A(u,) 
r r 

(kT) -  1 y" 2 2 2 2 2 2 --  "/rs(blrltlsl + lir21ds2 + UrZUs3)] . (8) 
r : / : s  

G(u,) denotes the harmonic term, i.e. a Gaussian distri- 
bution. In order to obtain the marginal distribution 
with respect to u,, we have to integrate over all co- 
ordinates u,, s 4: r. Since in (8) all terms can be factored 
with respect to r and s, we obtain 

g(u,) = N / '  G(B,)[ 1 - ( k T ) -  ' A(u~) 
- ( k  T )  - 1  ~ ~ 2 2 //23)], . C,.¢/,.du,~ + u , 2 +  s # r  (9) 

s 

N7 1 is the normalizing constant and is determined 
below. C,s are integration constants. We do not deter- 
mine them explicitly, but take all unknown constants 
together as one coupling constant F,, i.e. Fr = ~ C~.~?,s, 

s 

s # r .  (9) is similar to Willis (1969); only the coupling 
term with F, is new. For this term we have to determine 
the Fourier transform. It is the product of three one- 
dimensional transforms which we obtain explicitly 
from the tables of Oberhettinger (1957). For the re- 
maining terms in (9), we use Willis's expressions for 
the Fourier transforms, and obtain for the tempera- 
ture factor 

Tr(h) = Nr -1 exp [ -  2x2k T~7 ~(h~ + h~ + h~)] 
x { N~ + (k TT,ot7 t + F,)k T(2x)2~7 2(h2 + h 2 + h 2) 

+ W(fl .7~,6,)} ,  (10a) 

Nr = 1 - 3F,a~- ] - 1 5 k T 7 ~ 7  2. (10b) 

W(fl,,),,, 6,) denotes the anharmonic third- and fourth- 
order terms in Willis's (1969) equation (4.11). In (10) we 
have omitted the cubic lattice constant (as given by 
Willis) and refer u, and h to the crystal basis, as is 
customary in structure factor calculation. Compared 
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to Willis's equation (4.11), the two terms with the 
coupling constant F, are new. We find F, in the zero 
and second-order term, because the Fourier transform 
is represented by a second-order Hermitian polynom- 
ial. Although y, and F, appear together in N, and in the 
second-order term, they constitute two distinguishable 
parameters: the linear combinations in N, and the 
second-order term are different, and, moreover, y, is 
also determined by the fourth-order term. How ac- 
curately all four anharmonic parameters fl,, 7,, 6,, and 
F, can be determined in practice depends on the quality 
of the data, on the strength of the anharmonic vibra- 
tions, and on the degree of internuclear thermal 
coupling present in the given crystal. 

4. Conditions of the potential parameters 

In the preceding section, we made use of Willis's (1969) 
approach without comment, in order to complete the 
calculation. Here we add some remarks about the 
procedure, which have their origin in the following 
(formal) condition: all p.d.f.'s f(u), f(n,), g(n,) must be 
non-negative and integrable from - o o  to + ~ (by 
definition of a p.d.f.). Certain restrictions arise thereby 
for the potential parameters. They begin with those 
already on an isolated-atom potential. We can sum up 
the condition of the p.d.f, that V(u) in (7) must be posi- 
tive definite. The most important restrictions refer to 
the fl, and y, parameters. 

Cooper, Rouse & Willis (1968) used only a third- 
order fl, parameter, and no fourth-order parameters. 
Equations (2) and (3) of these authors do not form a 
p.d.f, because the exponential function obtained cannot 
be integrated from - o o  to + oo. When the fl, term is 
expanded in a series, the function becomes integrable. 
With the series expansion for fl,, refinement showed 
that a single fl, term appears to be sufficient; see the 
examples of Si (Willis & Pryor, 1975, p. 168) and CuC12 
(Sakata, Hoshino & Harada, 1974). Even so, the p.d.f. 
is not non-negative everywhere: For/3, and ui positive, 
1 - ( k T ) - l f l , u l u 2 u 3  becomes negative for sufficiently 
large ui. Since for large ui the Gaussian is nearly zero, 
the resulting p.d.f, will be only slightly negative. How- 
ever, for the p.d.f, to be non-negative everywhere, the 
presence of a fourth-order term with 7, negative is 
required. 

A more stringent restriction arises for the 7, param- 
eter, since it questions the transition from the Boltz- 
mann distribution (7) to the series expansion (8). (7) 
requires that 7, be positive ('hardening of the poten- 
tial'), otherwise f(u,) cannot be integrated. (8) requires 
that 7, be negative, otherwise f(n,) becomes negative. 
(7) and (8) are mutually exclusive with respect to the 
sign of 7,; hence the series expansion (8) does not form 
physically an approximation to the Boltzmann distri- 
bution (7), although it forms mathematically a good 
approximation for small u~. With respect to inte- 
grability from - ~ to + ~ ,  however, the behaviour for 
large u~ is important, and here the approximation also 

breaks down mathematically. In practice, when the 
series expansion was used, 7, was found to be negative 
(Willis & Pryor, 1975), in agreement with the restriction 
to be placed on 7,. 

There are no obvious restrictions for the 6, param- 
eter, since it only rearranges the p.d.f, to make it an- 
isotropic. For the coupling parameter F, both signs are 
allowed, and from (10) we obtain the (weak) condition 
IF, l_< ~,/3. 

Since 7, negative appears to be unacceptable for the 
Boltzmann distribution (7), we consider (8) and (9) for 
the p.d.f, to be a useful means of treating anharmonic 
motions in practice, but we hesitate to interpret the 
p.d.f. (8) and (9) physically as the Boltzmann distribu- 
tion of a potential. 

5. Relation to the cumulant expansion of the 
temperature factor 

Johnson (1969, 1970) discussed the temperature factor 
from the statistical point of view and showed that the 
deviations from a Gaussian distribution, i.e. the an- 
harmonic contributions, can be expressed in the expan- 
sion with cumulants. In particular, he showed that the 
anharmonic fl, parameter has to be attributed to the 
third cumulant and vice versa (Pawley, 1969). The 
cumulant expansion, in reciprocal space, expresses the 
convergence of the anharmonic deviations with respect 
to a Gaussian distribution in an optimal form (Kendall 
& Stuart, 1969). Hence, no physical approach is likely 
to surpass the cumulant expansion in its formal struc- 
ture. For this reason, the cumulant expansion of the 
temperature factor can give indications as to the com- 
pleteness of expressions derived by other methods. As 
we shall see, the results of lattice-dynamical studies also 
appear in the form of the cumulant expansion. The ex- 
pression (10) for the temperature factor, obtained with 
a unit-cell potential approach, however, differs formally 
from the cumulant expansion. In the transition from 
(10) to the cumulant expansion we have to make an 
approximation, the relevance of which will be discussed 
in this section. 

We obtain formally the cumulant expansion of the 
temperature factor from (10) by multiplying out the 
factor N71 and making the approximation 1 + x  -~ 
exp x for the anharmonic terms. Thus, we obtain 

T,(h) = exp [ -  2rt2k T~71(h2 + h 2 + h2)] 
x exp N7 1 [(10kTy,a71 + F,)kT(2rc)2a;- 2 
x (h 2 + h 2 + h~)+ i(k T)2(2rt)30c~- 3fl,hxh2h 3 
- ( k  r)3(2rt) '*aF4(7,-~6,) (h2 + h 2 +h2) 2 

- ( k  T)3(2rt)4a, -'*6,(h~ + h'~ + h~)]. (1 l) 

Apart from series expansion constants, the cumulants 
in (11) are the factors at the various combinations of 
the Miller indices (Johnson, 1969, 1970). For large 
values of the Miller indices, the approximation made 
is no longer valid, and the transition from (10) to (11) 
cannot be performed. With (9), we had to insist that 
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},, be negative; then the fourth-order b term will 
hl +h2+h 2, and dominate (11) for large values of 2 2 

T~(h) will be increased. [-In (10) the situation is different: 
the fourth-order term will always be compensated for 
by the harmonic exponential term for large values of 
hZ+hZ+h~.] Hence, the cumulant expansion (11)is 
meaningful only for sufficiently small values of the 
Miller indices. 

We expect that the difference in (10) and (11) will 
also become manifest in the respective p.d.f.'s. The 
p.d.f, to (10) is (9); the p.d.f, to (11) is usually calculated 
with the Edgeworth series (Johnson, 1970). We cal- 
culated the Edgeworth series for (11), and again ob- 
tained (9) (except for terms which result from N~¢I  
and which will be discussed below). Thus, it may ap- 
pear that the difference between (10) and (11) cannot 
be seen in the respective p.d.f.'s. This, however, is not 
true; the Edgeworth series only approximates the 
p.d.f, for (11). It does so in such a way that it represents 
the true p.d.f, in an optimal manner with the low- 
order cumulants that have actually been determined. 
But it is known that the Edgeworth series with only a 
few terms yields errors in the representation of the 
p.d.f. (Kendall & Stuart, 1969). The true inverse Fourier 
transform to (11) is not (9). The inverse Fourier trans- 
form to each term of the cumulant expansion (the 
Gauss term as a factor being included) is an exponen- 
tial with a differential operator in its argument (Ken- 
dall & Stuart, 1969, equations 6"35-6"40). The exact in- 
verse Fourier transform to (11) cannot be evaluated 
in practice and hence we cannot state explicitly the 
differences in the p.d.f.'s for (10) and (11). 

We conclude that, in going from (10) to (11), one 
should examine whether or not the temperature factor 
is increased for large values of the Miller indices. 

As will be discussed in §6, the lattice-dynamical 
calculations yield the temperature factor in the form 
of(11), but the factor N7 1 does not appear. In order to 
examine the effect of N,, we have calculated the p.d.f. 
for (11) with the Edgeworth series and N , =  1. The 
resulting p.d.f, is the marginal distribution (9) with 
N, = 1, plus the term G(u,) (15k TT,~ 7 2 ..~ 3F/x7 l), plus 
sixth, fourth, second and zero-order terms in /32 . 
These terms in/32 can be ignored. The constant term, 
however, is a consequence of putting N, = 1. Thus, in 
the marginal distribution (9) one can either add this 
term right away and then obtain the cumulant expan- 
sion (11) with N , =  1, or one has to have N,~I  in (9) 
and (11). We suggest the first alternative. 

Since the number of components of the cumulant 
tensors is limited (for each particular site symmetry), 
and is equal to the number of parameters that can be 
determined, the cumulant expansion allows us to judge 
critically the number of potential parameters intro- 
duced. Here one has to assume that the harmonic 
parameters are known so that the parameters in the 
second cumulant describe anharmonic contributions. 
[-In the temperature factor (11), the harmonic and an- 
harmonic second-order parameters cannot be separ- 

ated formally; however, for the calculation of the 
p.d.f., the harmonic and anharmonic second-order 
parameters must both be known.] For the cubic site 
symmetries 23 and 743m, there are four components of 
the cumulants. Thus, beside/3~, b, and 6~, we have in- 
troduced F, legitimately, but a further potential par- 
ameter is not appropriate. Without site symmetry 
there are 34 components of the first four cumulants. 
Thus, up to fourth-order terms, we expect a maximum 
of 34 independent potential parameters. 

6. Lattice-dynamical calculations 

Several lattice-dynamical calculations of the anhar- 
monic contributions to the temperature factor exist. 
Maradudin & Flinn's (1963) (lattice waves) and Wolfe 
& Goodman's (1969) (lattice sums in direct space) 
calculations were restricted to a monatomic crystal 
(site symmetry T). These authors also calculated num- 
erical results for Pb. For polyatomic crystals, two cal- 
culations (lattice waves) were carried out by Krivoglaz 
& Tekhonova (1961) and by Kashiwase (1965). A brief 
discussion of the effect of anharmonic motions on the 
temperature factor was given by Cochran & Cowley 
(1967). 

The expressions derived by Maradudin & Flinn 
(1963) and Wolfe & Goodman (1969) are essentially 
the same although two different methods of calcula- 
tion were employed. Maradudin & Flinn, however, 
did not find an isotropic fourth-order term, which 
corresponds to the fourth-order 7r term in (11), but only 
an anisotropic fourth-order term, q/'i their equations 
(5.12), (5. i 3), (6.11), (6.27). According to Wolfe & Good- 
man, an isotropic fourth-order term appears to be pos- 
sible. But this term is not coupled to the second-order 
term by one and the same parameter, as with the 
parameter ~,, in (10) and (11), and this term need not be 
positive, which would give rise to a divergence of the 
temperature factor. The second-order terms are the 
predominant anharmonic contributions in both cal- 
culations; Maradudin & Flinn even found two different 
contributions to the second-order term. This suggests 
that, even for monoatomic crystals, a second-order 
anharmonic parameter should be introduced into the 
p.d.f. (For polyatomic crystals, such a parameter is 
introduced by taking into account the interatomic 
thermal coupling.) 

The two lattice-dynamical calculations for poly- 
atomic crystals confirm, on the whole, the results ob- 
tained for monatomic crystals. All four calculations 
yield the temperature factor in the form of an exponen- 
tial function. Thus, the cumulant expansion is sug- 
gested to be the correct form of the temperature factor 
[and not a series expansion, such as (10)]. 

With respect to the effect of interatomic coupling, 
the two calculations contradict each other: Krivoglaz 
& Tekhonova (1961) did not find any effect, whereas 
Kashiwase found an explicit term of the form 
exp(-AM~.~) for two atoms r and s in the expression 
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for the Bragg intensity (Kashiwase, 1965, equation 
2.24). In our opinion, neither result is correct. Krivoglaz 
& Tekhonova (1961) did not calculate the contribution 
of the zero-phonon transitions for the intensity, but 
only for the structure amplitude (according to 
(exp 2~ih. u~r)), cf their equations (5) and (10). With 
such a reduced form of the average, one cannot expect 
to obtain results with respect to interatomic thermal 
coupling. Kashiwase (I 965) sets up the correct average 
for the intensity, (exp 21tih.(u~,-uv,,)). However, a 
coupling term of the form exp (-AM,.O in the expres- 
sion for the Bragg intensity means that the Bragg in- 
tensity can no longer be represented by a structure 
factor F, with /Bragg = FF* (Kashiwase, 1965, equation 
2.24), since the term exp ( - A M J  cannot be factored 
into two terms which depend solely on r and s respec- 
tively.? Kashiwase's equation (2.24) contradicts Mar- 
shall & Lovesey's (1971, ch. 2) proof concerning Bragg 
scattering. Cochran & Cowley (1967, p. 126) also ex- 
clude a coupling term of the type suggested by Kashi- 
wase. 

A further remarkable result of both lattice-dynam- 
ical calculations for polyatomic crystals is the fact that 
no imaginary contributions to the temperature factor 
(odd-order cumulants) were found. There is, how- 
ever, no doubt that such contributions are physically 
real. They mean that the p.d.f, of the nuclear motions 
need not necessarily be centrosymmetric. Structural 
examples were reported by Sakata, Hoshino & Harada 
(1974) and by Willis & Pryor (1975). A further example 
is the curvilinear motions of atoms with large libra- 
tions of molecules. 

In order to state where to look for the imaginary 
contributions of the temperature factor we write, for 
the Bragg intensity, 

lm~gg = FF*= ~.]~.[;TrT; 
r 

+ ~.l~f~T,r~exp[2~ih.(x~-xO]. (12) 
r g s  

Let the form factors J;,J.~ be real. The temperature 
factor is given in the cumulant expansion as 

7)(h) =exp [R,(h)+ iL(h)], (13) 

where R,(h) and l,(h) denote the real and imaginary 
parts respectively. From (I 2) and (13) we obtain 

I,,r,.gg = ~.l ' ,  z exp (2RA 
r 

+Y.l;.l~exp(Rr+R~)cos[Ir-ls+2,th.(xr-xO]. (14) 
r ¢ : s  

+ Our calculation in §2 and 3 yields a formally different expres- 
sion: although the interatomic coupling has been taken into ac- 
count, the Bragg intensity can be calculated from a structure factor, 
and in each term the temperature factors 7;Ih) and 7~(hl appear in 
the form of a product. 

With (14), the imaginary part of the temperature factor 
only appears in the mixed terms, r4=s, and here it 
should be found with a lattice-dynamical calculation. 
(14) means, furthermore, that for the calculation of the 
recoil free fraction of a M6ssbauer active atom, only 
the real part of the temperature factor is needed. 

The numerical results obtained for Pb by the differ- 
ent authors show remarkable differences. This holds in 
particular for the anisotropic fourth-order terms. One 
reason for this is that Maradudin & Flinn (1963) made 
certain approximations in the theoretical evaluation 
of this term. Furthermore, certain models, which are 
to some extent arbitrary, for the interatomic forces 
always have to be assumed. In view of these difficulties, 
it appears that a reliable determination of anharmonic 
parameters by means of lattice-dynamical calculations 
is at present impossible. Hence, the experimental deter- 
mination of these parameters recommends itself, al- 
though this involves collecting diffraction data of the 
highest quality. 

7. Conclusion 

In this paper, we have tried to compare the various 
approaches to the calculation of the anharmonic con- 
tributions to the temperature factor. After the analysis 
in ,~4-6, we arrive at the following conclusions: 

(1) The cumulant expansion of the temperature fac- 
tor represents the best convergence of the anharmonic 
deviations with respect to the harmonic basic term. 
The formal expression of the cumulant expansion is 
confirmed by the lattice-dynamical calculations, in 
that these are complete. 

(2) We consider the lattice-dynamical results hither- 
to obtained for polyatomic crystals to be incomplete; 
the imaginary contributions to the temperature factor, 
i.e. the odd-order cumulants, are missing. They should 
be found in the mixed terms, r-Y: s, of the expression for 
the Bragg intensity. 

(3) The p.d.f, which corresponds to the expression 
for the temperature factor found by lattice-dynamical 
calculations is the inverse Fourier transform of the 
cumulant expansion. This inverse Fourier transform is 
an exponential function with differential operators in 
its argument, and, hence, cannot be represented with 
simple physical terms such as potential parameters. 
Thus we consider all attempts to establish the exact 
p.d.f, for anharmonic motions with simple physical 
terms to be meaningless. 

(4) A potential approach to the calculation of tem- 
perature factors appears to be insufficient in its physical 
interpretation. Since the Boltzmann distribution, with 
7~ negative, does not represent a p.d.f., we cannot accept 
it as the physical basis for the evaluation of the temper- 
ature factor. Furthermore, the Boltzmann distribution 
of a potential is not confirmed as a p.d.f, by the lattice- 
dynamical calculations. Hence we consider the Boltz- 
mann distribution of a potential to be only a simple 
means of obtaining a useful form of the temperature 
factor. 
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(5) For practical application of the potential ap- 
proach we give the following recommendations: 

(a) Never use only third-order fl, parameters. 
(b) Introduce a zero-order term 

G(u,)[15kTT,~; 2 + 3r ,~ -1]  

into the p.d.f. (9) for cubic site symmetry, and put N, = 1. 
(c) Use independent anharmonic second-order par- 

ameters (F, as coupling parameter for polyatomic 
crystals). (b) and (c) are suggested mainly by the lattice- 
dynamical results. 

In two earlier papers (Scheringer, 1972, 1973), we 
investigated the effect of interatomic thermal coupling 
by lattice-dynamical calculations. Our considerations 
were restricted to the harmonic approximation, and 
had the result that the form of the temperature factor 
remains the same whether there is interatomic thermal 
coupling or not. The present discussion, in which we 
consider the distribution function of the nuclear posi- 
tions, is much simpler and confirms this result. In the 
anharmonic case, however, we obtain formally different 
expressions for the temperature factor depending on 
whether we take into account interatomic thermal 
coupling or not. This more general result corresponds 
to the supposition that the author has held for a long 
time, but it was concealed in the special case of the 
harmonic approximation by the distinctive properties 
of the Gaussian distribution. 
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